
Matching with a Status Quo: The Agreeable Core

Peter Doe∗

June 12, 2024

Abstract

We provide a framework to unify classic models of two-sided matching with recent models

of recontracting. In the classic model, agents from two sides must be matched; in models

of recontracting, agents improve a status quo match. We generalize the core (matches not

blocked by any coalition) from cooperative game theory to our setting by restricting the

set of permissible coalitions to coalitions containing neither or both agents in a status quo

match, dubbed “agreeable” coalitions. The agreeable core is the set of all weak improvements

of the status quo that are not blocked by any agreeable coalition. Our main result is that

the agreeable core is nonempty and can be found through a computationally efficient and

economically meaningful algorithm: our Propose-Exchange algorithm. The applications of the

agreeable core include early decision, out-of-match agreements in the NRMP, matching with

minimum constraints, and efficiency in school choice.

1 Introduction

The classic theory of two-sided matching models markets ex ante to any agreements made by

agents. We introduce a framework to describe two-sided matching markets ex interim when some

agents are already matched while others are not. Such agreements form the status quo and can

only be broken by the mutual agreement of both agents in the pair. Standard solutions such as

the core often supply outcomes that harm some agents compared to the status quo, violating the

guarantee provided by the status quo. In this paper we provide a more general notion of the core

that (weakly) improves the status quo yet maintains an appropriate definition of blocked matches.

Numerous markets exist with ex interim contracts which are costly to break: early decision

agreements in college admissions, multi-year contracts between athletes and sports teams, and the

outside-the-match residencies of the NRMP, among many others. Market designers have limited
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tools in these markets. Depending on the application, the standard practice in the literature is to

exclude either agents who hold a contract (as in the NRMP) or agents who do not hold a contract

(Combe et al., 2022; Dur and Ünver, 2019).1 This deficiency has severely limited the applications

to markets with regular recruitment cycles (the NRMP or school choice) or markets in which newly

arriving agents are undesirable (teacher reassignment). Treating matched and unmatched agents

separately lowers the overall efficiency of the mechanism and fails to incorporate the voluntary

nature of contracts – an existing contract is not a constraint if both parties agree to cancel it. The

theory we present unifies the two models to provide a general model applicable to substantially

more matching markets.

The foundation of our analysis is a reinterpretation of the fundamental justification for the

core as the outcomes that “cannot be profitably upset by the collusive action of any subset of the

participants, acting by themselves” (Shapley and Scarf, 1974), emphasis ours. We model the status

quo as restricting the set of coalitions to only those that include exactly neither or both partners of

a status quo match. These coalitions are dubbed agreeable because they can only block one match

by recommending another that both partners in a status quo match agree to. If a coalition is not

agreeable, then the coalition cannot act by itself – any agent whose status quo partner is in the

coalition may veto the action. The agreeable core is the set of weak improvements of the status

quo that are not blocked by any agreeable coalition. These matches are immune to deviations by

coalitions that are not vetoed by some agent.

Our main result is a constructive algorithm that always outputs a match in the agreeable

core for strict preferences. No other assumptions are needed on preferences or the status quo.

Our Propose-Exchange (PE) algorithm is a nuanced hybrid of the Deferred Acceptance (DA, the

“Propose” phase) and Top Trading Cycle (TTC, the “Exchange” phase) algorithms. The broad

design of the PE is to divide the market into those agents who cannot form a new match freely

because their status quo partners cannot find better matches, and those who can. The former

group finds a match by a variation of the DA while the latter group finds a match by a variation of

the TTC .

The Propose-Exchange algorithm offers interpretive insights into the status quo’s effect on the

resulting match and its connection with one-sided allocation problems. When no agent is matched

in the status quo, the PE emulates the DA, which results in a pairwise stable match. When all

agents have a status quo match, the PE algorithm emulates a variation of the TTC, the TO-BE of

Combe et al. (2022). In mixed environments when some agents have a status quo match and others
1A notable exception is Abdulkadiroğlu and Sönmez (1999), who study a one-sided allocation problem when some

agents already own objects.
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do not, the PE first attempts to satisfy both partners in a status quo pair individually by releasing

one agent from the pair to either make or receive proposals only when the other has received or not

(yet) been rejected by some more preferred partner (the propose phase). The PE then allows the

remaining agents to exchange status quo contracts in a Pareto efficient manner.

The agreeable core has broad applications beyond markets with a clear set of ex interim contracts.

School choice with minimum quotas can be implemented through a straightforward assignment

of status quo matches (if every school assigned is assigned its minimum quota of students in the

status quo match, then none will be matched to fewer students). Similarly, the Boston Public

Schools opted for the DA over the more efficient TTC because the TTC allows students to trade

all priorities when they believed that “certain priorities – e.g., sibling priority – apply only to

students for particular schools and should not be traded away.”2 The PE naturally incorporates

both tradable and nontradable priorities through the status quo (see section 7 for details). These

and other applications are remarkably simple in our framework.

Like many mechanisms in two-sided matching, the PE algorithm suffers from manipulability.

Although both the DA and the TTC are strategyproof for one side of the market, their combination

is not. Some agents in the Exchange phase of the algorithm have an incentive to misreport their

preferences to affect the match in the Propose phase and induce more agents to participate in the

Exchange phase. Our second result shows that manipulability is a universal property of mechanisms

whose output is in the agreeable core.

The rest of the paper is organized as follows. The remainder of the introduction highlights the

connections between this paper and the classic literature on two-sided matching and the more recent

developments on matching with a status quo and matching with minimum constraints. Section

section 2 contains the formal model and defines the core. Section section 3 illustrates the emptiness

of the core in the presence of status quo matches and the existence of the agreeable core. The

intuition built in the example informs our definition of the agreeable core in Section section 4.

We answer the question of existence in section 5 by introducing our Propose-Exchange algorithm.

Section 6 explores related questions of manipulability and structure, and section 7 closes with a

discussion of the agreeable core and its applications.

1.1 Connection to the Literature

This paper develops and connects several literatures on two-sided matching. An exhaustive review

of the literature is far beyond the scope of this paper, so we list the only the most closely related

work and its connections with this paper.
2We could not find the original source of this quote, so we copy it from Morrill (2013).
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We integrate the classic model of two-sided matching with recent advances in recontracting.

In the classic model, a stable match always exists and can be found in by the DA (Gale and

Shapley, 1962). It is well known that the set of pairwise-stable matches corresponds to the core

of a related cooperative game (Roth and Sotomayor, 1990). Later research largely discarded the

connection with the core in favor of pairwise-stability notions. When considering matching with a

status quo (in which the intersection of pairwise stable and individually rational outcomes may be

empty), Pereyra (2013); Guillen and Kesten (2012) generalize pairwise-stability by partitioning

claims between valid and invalid claims and then removing all valid claims. This may be strongly

inefficient (Combe and Schlegel, 2024; Combe et al., 2022), and hence a mechanism with minimal

envy is considered (Kwon and Shorrer, 2023). Although efficient, these minimal envy mechanisms

are inscrutable to participants: the designer allows some claims but not others only because doing

so minimizes some objective. Our paper advances this literature by reconnecting the status quo

back to the core, a more interpretable solution. We both minimize envy as in Kwon and Shorrer

(2023) but also provide a clear definition of valid and invalid claims as in Pereyra (2013).

Research in school choice has made extensive use of both the DA and TTC. Abdulkadiroğlu

and Sönmez (2003) suggests the Deferred Acceptance (DA) algorithm from Gale and Shapley

(1962) or the Top Trading Cycles (TTC) algorithm from Shapley and Scarf (1974) as desirable and

implementable solutions. Both algorithms run in polynomial time, are relatively easy to describe,

and are strategyproof. The DA is fair while the TTC is efficient. A plethora of researchers seek

to combine the two algorithms to gain improve efficiency by allowing certain priority violations

(Abdulkadirog, 2011; Dur et al., 2019; Kesten, 2006; Kwon and Shorrer, 2023; Reny, 2022; Troyan

et al., 2020; Morrill, 2013; Dur and Morrill, 2017). Papers in this vein typically define a set of

properties of a mechanism (such as the allowable priority violations, efficiency, strategyproofness,

etc.), and then present a satisfactory algorithm, typically a variation of the DA or TTC (usually

the unique such one). Our work complements this approach by an algorithm derived from first

principles rather than with specific objectives in mind.

A connected branch of matching theory develops methods for matching with minimum quotas.

Schools are modeled as having both a maximum capacity for students but also a minimum required

quota of students. One approach is to allow for wasted seats but not envy (Fragiadakis and Troyan,

2017). A separate approach uses an auxiliary “master list” (Ueda et al., 2012) or “precedence list”

(Fragiadakis et al., 2016; Hamada et al., 2017) as a means to break ties: if two students wish to

take an empty seat but the minimum quota requires that only one may do so, the list determines

which worker can. The algorithms described in both approaches typically either sacrifice efficiency

(based on the DA) or fairness (based on the TTC), and both require that all agents are mutually
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acceptable. We develop both approaches by endogenizing the master list into the status quo and not

requiring any assumptions on preferences. Although a master list is natural in some applications,

whether a master list or the status quo is more appropriate depends on the application.

Surprisingly, no authors have connected matching with minimum quotas and the matching with

a status quo. We combine these subfields with the observation that, if the status quo provides

a guarantee for both workers and firms, then minimum quotas are the special case when every

firm is assigned workers equal to its minimum quota in the status quo. The status quo provides a

different justification for why some blocking pairs are allowable but others are not, one which we

think applies well to school choice.

Finally, the paper closest in spirit to ours is Abdulkadiroğlu and Sönmez (1999), “House

Allocation with Existing Tenants.” Their model is one-sided, and they show that a hybrid of the

Serial Dictatorship algorithm and the TTC algorithm provides an efficient improvement over the

status quo. We present a two-sided model with a hybrid algorithm between the DA and the TTC.

Although our models are different, our approach is remarkably similar to theirs.

2 Model

In this section we present the one-to-one matching model. In section 7 we discuss extending the

theory to the many-to-one model of school choice.

The set of agents A is partitioned into the set of workers W and the set of firms F . For clarity

of exposition we use masculine pronouns for workers and feminine pronouns for firms. Every worker

w ∈W has an linear preference order ≿w over F ∪ {w}, and every f ∈ F has an associated linear

preference order ≿f over W ∪ {f} (no indifferences are allowed).3 A preference for oneself is a

preference to be unmatched: if a prefers a to b this means that a prefers to remain unmatched than

to match to b.

A match is a function µ : A→ A such that the following hold:

1. if w ∈W then µ(w) ∈ F ∪ {w}; and

2. if f ∈ F then µ(f) ∈W ∪ {f}; and

3. µ(µ(a)) = a.
3We considered introducing indifferences in the model to better fit the school choice application, combined with

optimization techniques from Erdil and Ergin (2008), to find a “student optimal assignment.” However, as noted by

Balbuzanov and Kotowski (2019), in this setting the weak core is too big and the strong core is empty. Adapting the

exclusion core seems to our setting resolves this issue, but at the cost of clarity and with little gain: even with an

appropriate definition of the core, we have not found an efficient way to adapt Erdil and Ergin (2008) to our model.
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The first two require that the match is two-sided: every worker matches to a firm (or is unmatched)

and every firm matches to a worker (or is unmatched). The third requires that every agent is

matched to the agent matched to him or her. If µ(a) = a then a is µ-unmatched; otherwise, µ(a) is

the µ-partner of a. We write µ ≿X µ′ to mean µ(x) ≿x µ
′(x) for all x ∈ X.

There is a status quo match µ0. The status quo match limits the set of matches we consider to

the set of matches we consider to those satisfying the following:

Definition 1. Match µ is individually rational if µ ≿A µ0.

The interpretation is that if agent a prefers µ0(a) to µ(a), then a can demand the status quo

match µ0.

A coalition C ⊆ A is a subset of agents who may form a match among themselves. Let

µ(C) ≡ {µ(a) : a ∈ C}. Note that if µ(C) ⊆ C, then µ(C) = C. If a coalition weakly prefers a

match µ′ to µ and µ′ only matches agents in C to agents in C, then C may block µ; formally,

Definition 2. Coalition C blocks µ through µ′ if µ′ ≿C µ, µ′(a) ≻a µ(a) for at least one a ∈ C,

and µ′(C) = C.

The core is the set of all individually rational matches not blocked by any coalition through any

match.4

3 A Motivating Example

The following example illustrates the main idea of the paper. It demonstrates that the intersection

of the core and the individually rational matches may be empty but that certain selections from

the set of individually rational matches are more appealing than others.

Example 1 (Regretted Contracts:). Two cities A and B are seeking contractors for construction

projects, an apartment complex for city A and a bridge for city B. There are two qualified contractors

1 and 2, both of whom have signed contracts with cities A and B, respectively. In the language

of our model, these contracts are the status quo match, the set of contracts to which any agent

can appeal, denoted µ0. Contracts may be canceled only by the mutual agreement of the parties

involved. Therefore, any outcome must guarantee that all agents are weakly better off than under

the status quo match.
4Formally, this is the strong core because we consider all weak blocks (allowing some coalition members to be

indifferent between µ′ and µ). In two-sided matching without indifferences all weak blocks are strong blocks. Because

the coalitions we will consider later will usually contain agents who do not change partners, we use the strong core

as it is smaller.
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1 2

1̃ 2∗

A∗ Ã

... B

A B

2̃ B̃∗

1∗ 2

... ...

Figure 1: We depict the preferences in Regretted Contracts. The header of the column is the agent

and the column lists preferences from most to least preferred. The entries in bold indicate the

status quo match. The ∗ and ∼ indicate µ∗ and µ̃, respectively. For example, the preferences in

the 2 column are read as 2 ≻2 A ≻2 B, and µ∗(2) = 2 and µ̃(2) = A.

Both contractors 1 and 2 fall upon hard times. Contractor 1’s chief apartment engineer is

now employef by contractor 2, and contractor 2’s chief bridge engineer has resigned. Contractor

1 desires no contract and contractor 2 would rather have no contract to the contract with A to

the contract with B.5 City A still wants the apartment building built and prefers contractor 2

now, but city B would rather not have any contracts now that the bridge engineer has resigned.

The preferences are summarized in figure 1, with the status quo match in bold and the two Pareto

efficient matches that improve on the status quo match are marked by the ∼ and superscript ∗.

Consider the core. Because 1 and 2 both prefer to be unmatched, any match in the core must leave

both 1 and 2 unmatched (otherwise, the coalition of {1} or {2} blocks the match). However, this

implies that A is unmatched, a violation of the status quo match µ0. It follows that no match in

the core is a (weak) Pareto improvement of the status quo match and so the standard cooperative

game theoretic solution provides no insights.

The failure of the core to provide a match that is individually rational arises from the blocking

coalitions allowed. Allowing every subset of agents to block is too permissive and ignores the status

quo match µ0. Indeed, the core is usually justified by arguing that agents in the blocking coalition

could form contracts among only themselves, which allows for coalitions such as {1} or {B}. For

example, consider match µ∗. The coalition {1} blocks µ∗, but would city A willingly cancel her

contract with contractor 1? City A’s approval depends on whom she matches with after block. As
5We assure the concerned reader that it is not critical to our example that some contracts fail the standard notion

of individual rationality (that is, both contractors 1 and 2 would rather be unmatched than fulfill their obligations).

A larger example would demonstrate the same concepts at the cost of expository conciseness.
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contractor 2 does not prefer city A to his match under µ∗, contractor 1 cannot secure a (weakly)

preferred partner for city A. No coalition C such that µ0(C) = C blocks µ∗.

In contrast to µ∗, consider µ̃. Contractor 2 would like to contract with himself, but needs the

approval of city B. To guarantee that city B weakly prefers the blocking match to µ̃, contractor 2

must include both city B in the blocking coalition. Because µ0({2, B}) = {2, B}, no other agent

needs to approve of the block.

Our solution, the agreeable core, requires that every agent in a blocking coalition guarantees his

or her partner in the status quo match a partner he or she weakly prefers to the current match.

Equivalently, we do not consider coalitions that contain an agent but not his or her partner in the

status quo match. Such coalitions are agreeable because agents in a status quo match mutually

agree to the coalition. In this example, the coalition {2, B} is agreeable and blocks µ̃. No agreeable

coalition blocks µ∗, and hence µ∗ is the (unique) element in the agreeable core.

4 The Agreeable Core

Example 1 demonstrates that the core may be empty. The nonexistence of a match that is both

individually rational and unblocked by every coalition of agents motivates restricting either the

matches a coalition can block through or the coalitions considered. The choice is nontrivial and

hinges upon the interpretation of the status quo match.

If the matches that a coalition can block through are restricted, then the natural requirement is

that any coalition can block but only through an individually rational match µ. The interpretation

is that the status quo match is inviolable ex post. In order to block a match, a coalition needs only

to suggest an individually rational match; as long as all agents are weakly better off than at µ0, no

agent can complain about his or her partner. In example 1, however, no individually rational match

is unblocked in this sense: we showed that µ̃ is blocked by coalition {2, 3, B} with the individually

rational match µ∗, while µ∗ is blocked by coalition {1} with the individually rational match µ̃.

Hence, this notion may be empty.

The alternative is to restrict the set of coalitions but not matches they can block through. The

interpretation is that the status quo match is not only inviolable ex post but also that any new

contract formed by an agent requires the ex ante approval of his or her µ0-partner. We consider

only coalitions meeting the following criterion:

Definition 3. A coalition C is agreeable if µ0(C) = C.

A coalition C is agreeable if any contract in µ0 does not contain both an agent in C and an

agent not in C. By restricting our attention to agreeable coalitions, we require that every agent in
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a blocking coalition of µ guarantees his or her µ0-partner a weakly better partner at match µ′ than

at µ. To guarantee such an improvement, the µ0-partner’s partner at µ′ must also be included in

the coalition, which implies that the µ0-partner’s µ′-partner must also be included in the coalition,

and so on. Definition 4 formalizes this idea.

Definition 4. The agreeable core is the set of individually rational matches not blocked by any

agreeable coalition.

The agreeable core puts a strong requirement on blocking coalitions: every agent in the coalition

and their µ0-partners must be made weakly better off. Our interpretation is that if some agent a is

harmed by a block and his or her µ0-partner is in the blocking coalition, then a can veto the block

by refusing to cancel the status quo contract. The important nuance is that the harmed agent can

veto µ′ even if he or she prefers µ′ to µ0.

The veto power inherent in the agreeable core allows one member of a status quo match to

dictate the matches his or her partner can form. The picture to have in mind is both agents in a

status quo match simultaneously searching for better matches. They both agree to cancel their

status quo match simultaneous to both confirming new partners. Because the match of one partner

influences who is willing to match with the other, both must agree not only to cancel their status

quo match but also approve of the other’s new match. By only considering agreeable coalitions, we

allow agents to veto a blocking coalition before the coalition acts.

We find the following justification for the agreeable core helpful in explaining the agreeable

core and how we allow agents veto blocking coalitions ex ante. For a given status quo µ0, agents

are considering forming the individually rational match µ. Before µ is realized among the agents

(say, before the agents cancel their status quo agreements and form the µ agreements), a coalition

considers enforcing some match µ′ among themselves. If some agent a is in the coalition but µ0(a)

is not in the coalition, then µ0(a) may refuse to permit a to form µ′ unless µ0(a) is certain he or

she will prefer µ′ to µ. Hence, µ0(µ) must also be in the coalition.

Perhaps surprisingly, the set of matches not blocked by any agreeable coalition is not a subset

of the individually rational matches. Our definition of blocking coalition does not allow an agent to

demand µ0, and hence the restriction to individually rational matches is substantive. For a simple

example, restrict example 1 to just contractor 1 and city A. The match µ(1) = 1 and µ(A) = A is

not blocked by any coalition but does not Pareto improve µ0.

We devote section 5 to developing the machinery to prove our main result, namely, that the

agreeable core is never empty. In the remainder of this section we briefly touch on several aspects

of the agreeable core that do not require our more involved techniques. Section 4.1 shows that the

agreeable core is always Pareto efficient, and conversely if µ0 is Pareto efficient then {µ0} is the
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agreeable core. As alluded to in the introduction, our model features several connections with both

the classical model of stability (Gale and Shapley, 1962) and more recent models of reassignment

(Combe et al., 2022; Pereyra, 2013). In section 4.2 and section 4.3 we develop these connections; as

an expository device and a prelude to our algorithm, we highlight the two leading algorithms in

two-sided matching – the Deferred Acceptance (DA) and the Top Trading Cycles (TTC) algorithms

– and their adaptations used in the literature to guarantee individual rationality.

4.1 Efficiency

In this subsection we investigate the efficiency of the agreeable core. Our first observation is that

every match in the agreeable core is not Pareto dominated:6 if ν Pareto dominates µ, then A (which

is always agreeable) blocks µ through ν. Our second observations is a kind of converse: if µ0 is not

Pareto dominated, then µ0 is in the agreeable core. To see this, suppose (toward a contradiction)

that some agreeable coalition C blocks µ0 through µ. But then because µ0(C) = µ(C) = C, we

can define µ′ that agrees with µ for agents in C and agrees with µ0 everywhere else. But µ′ then

Pareto dominates µ0, a contradiction to the supposition that µ0 is Pareto efficient.

Remark 1. Every µ in the agreeable core is Pareto efficient.7 Moreover, µ0 is Pareto efficient if

and only if the µ0 is the unique element of the agreeable core.

Remark 1 assures us that the agreeable core satisfies the most common efficiency standard.

4.2 Connection to Stability

Our model parallels the classic theory of stability introduced by Gale and Shapley (1962) except

that the classical model does not include a status quo in the primitives. A blocking pair of a match

is any worker and firm pair such that both prefer each other to their match. A match is stable if all

agents prefer their match to being unmatched and there are no blocking pairs of the match. It is

well-known (Roth and Sotomayor, 1990) that the set of stable matches is the core that we defined

previously. Our definition of the agreeable core guarantees that if µ0(a) = a for all a ∈ A, then the

agreeable core corresponds to the core because every coalition is agreeable. Therefore stability is

the special case of the agreeable core when µ0 leaves all agents unmatched.

Gale and Shapley (1962) gives an efficient algorithm for constructing a stable match: the

Deferred Acceptance algorithm (algorithm 1). The DA includes an auxiliary agent ∅ that indicates

if a worker has been matched by the algorithm yet. Initially, the DA assigns every worker to ∅ and
6We say that ν Pareto dominates µ if every agent weakly prefers ν to µ and at least one agent strictly prefers ν

to µ.
7If µ is not Pareto dominated by any ν, then µ is Pareto efficient.
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every firm to herself. At every step of the DA, every worker matched to ∅ proposes to the firm he

prefers the most among those he has not proposed to yet (if he would rather be unmatched, he

is matched to himself and removed). Every firm then reviews the proposals she receives and her

current match and rejects all but her most preferred proposal or match. The process continues

until no more workers are matched to ∅.

Algorithm 1 Deferred Acceptance (DA) algorithm
Notation: when we write µ(f)← w, we mean that f is matched to w and if another worker w′

was matched to f , then w′ is matched to ∅.

set µ1(w)← ∅ for all w ∈W . ▷ every w needs to be matched

set µ1(f)← f for all f ∈ F . ▷ every f is initially unmatched

while µDA(w) = ∅ for some w ∈W do ▷ continue until every w has been matched

for every w ∈W such that µDA(w) = ∅ do ▷ every unmatched w proposes

w proposes to his most-preferred firm that he has not yet proposed to; if he would rather

be unmatched, instead he proposes to himself and set µDA(w)← w.

end for

for every f ∈ F do ▷ every f rejects all but one proposal

let w be f ’s most preferred proposal that she prefers to being unmatched (if any); f rejects

all other proposals and set µDA(f)← w;

end for

end while

return µDA

Although guaranteed to produce a match unblocked by any coalition, the DA fails to satisfy

individual rationality (see Pereyra 2013; Combe et al. 2022). There are two ways in which individual

rationality can fail. First, a worker may strictly prefer his µ0-partner to his match. Pereyra (2013)

resolves this issue by requiring that each firm ranks accepts her µ0-partner if he proposes to her.

This modification guarantees that workers find the outcome individually rational because no worker

proposes to a less preferred firm without being rejected by his µ0-partner.

In our setting firms also have individual rationality constraints. The DA fails to accommodate

these because a worker makes proposals (and may be matched to another firm) even though his

µ0-firm has not received a proposal she prefers to the worker. We will see in section 5.2 how to

resolve this tension by limiting which workers can propose.



4 The Agreeable Core 12

4.3 Connection to Reassignment

As referenced in our literature review, a series of recent papers have considered reassignment

problems. The main thrust of this literature is to find a match through a strategyproof mechanism

that is both individually rational and maximizes some objective function (Combe et al., 2022).

Because the agreeable core is motivated with first principles (the core) rather than with an objective

in mind (obtaining a strategyproof mechanism), there are substantial differences in definitions

and results. However, both approaches employ the same method: the Top Trading Cycles (TTC)

algorithm. The TTC finds a match such that no coalition of workers can reallocate their µ0-firms

among themselves and improve their matches. We define the TTC in algorithm 2.

Algorithm 2 Top Trading Cycles (TTC) algorithm
set µTTC(a) = a for all a. ▷ every a starts unmatched

every agent stands up.

while at least one agent is standing do ▷ continue until every a is matched

every standing worker points to his most-preferred of the standing firms.

every standing firm points to her most preferred of the standing workers.

choose an arbitrary cycle (w1, f2, . . . w2k−1 ≡ w1, f2k ≡ f2) such that every agent points to

the next agent in the cycle and have all agents in the cycle sit down.

set µTTC(wk)← fk+1. ▷ match w in the cycle to the f he points to

end while

return µTTC

If some agents are matched by µ0, then the TTC may not be individually rational. To

accommodate this, Combe et al. (2022) and Combe (2023) make the following two modifications.

First, a firm must point to her µ0-worker so long as he is standing. This guarantees that µTTC ≿W µ0.

Second, no worker may point to a firm if that firm prefers her µ0-partner to the worker. This

guarantees that µTTC ≿W µ0.

In our setting, however, these modifications are not enough. As we saw in section 4.2, the

agreeable core equals with the set of stable matches when all agents are µ0-unmatched. At least in

this case firms must be given power to decide between the workers pointing to them, as in the DA.

In section section 5.3 we incorporate this by limiting which workers and firms participate in the

TTC.



5 A Proof of Existence: The Propose-Exchange Algorithm 13

5 A Proof of Existence: The Propose-Exchange Algorithm

In this section we present a computationally efficient and economically meaningful algorithm that

always produces a match µ2 (defined through this section) in the agreeable core. It directly implies

that the agreeable core exists and provides some insight into its structure. Our main result is the

following:

Theorem 1. µ2 is in the agreeable core.

The proof (and definition of µ2) occupies the remainder of this section. All omitted proofs are

contained in appendix A.

Our algorithm is the Propose-Exchange algorithm (PE) and is composed of two phases. The first

phase resembles the Deferred Acceptance (DA) algorithm and eliminates any block by a coalition

that either includes an agent who is unmatched in the status quo or who becomes unmatched by

the block. The second phase resembles the Top Trading Cycles (TTC) algorithm and eliminates

all blocks that involve reshuffling status quo partners among themselves. For readers unfamiliar

with the DA and the TTC, we refer the reader to our introductions in section 4.2 and section 4.3,

respectively.

5.1 A Graph-Theoretic Depiction

Despite our parsimonious definition of the agreeable core, so far testing whether µ is in the agreeable

core requires checking whether any coalition can block µ through any µ′, which is only feasible in

small examples. Our main result from this subsection is a characterization of blocking coalitions in

terms of alternating paths in an (edgewise) colored graph, which is computationally efficient. We

use the language of graph theory to formalize our ideas, and throughout we denote by µ both the

function µ and the set {{a, b} : µ(a) = b}; if µ(a) = a, then we include the element {a} ∈ µ.

An (edgewise 2-colored) graph G is a triplet (V,E0, E1) where V is a set of vertices and E0 and

E1 are sets of unordered pairs of vertices called edges (possibly including an edge from a vertex

to itself, called a loop). Both E0 and E1 may contain an edge between the same set of nodes; we

consider these edges distinct.8

We consider graphs where the vertices are agents, the first set of edges is µ0 (connecting status

quo partners) and the second set of edges connects agents who weakly prefer each other to some

given match µ. Accordingly, let I(µ) be the set edges (possibly including loops) between agents that

strictly prefer each other to their µ-partners; formally I(µ) = {{a, b} : b ≻a µ(a) and a ≻b µ(b)}.
8This means that G is a multigraph.
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Our main graph of interest is (A,µ0, µ∪ I(µ)). That is, the vertices are agents, the first set of edges

connects status quo partners, and the second set of edges connects all pairs that weakly prefer each

other over their µ-partners.

A (simple) path in (V,E0, E1) is a vector of edges P = (e1, . . . , en) without repeats such that

ek ∩ ek+1 ̸= ∅ for 1 ≤ k < n. Recall that an edge may appear twice (in both E0 and E1), and so a

path may consist of an edge between two nodes twice, once from E0 and once from E1. We say

a vertex is in a path if the path contains an edge that contains the vertex. We sometimes abuse

notation and write P for the vertices in P .

A path P is complete if every vertex contained in the path is contained in exactly two edges of

the path. A path is alternating if no pair of consecutive edges are from the same set of edges (E0 or

E1). For an arbitrary complete and alternating path P in (A,µ0, µ ∪ I(µ)), we define µP for a ∈ P

such that {a, µP (a)} is the edge in P containing a that is from µ ∪ I(µ). That is, µP matches

a ∈ P to the agent whom a shares an edge from µ ∪ I(µ) in P with and is arbitrary otherwise. By

lemma A.2 in the appendix, every agent in P is contained in one edge from µ0 and one edge is

from µ ∪ I(µ), so µP is well defined and µP (P ) = P .

Our main result of this subsection is that a path that is complete, alternating, and contains an

edge from I(µ) corresponds to an agreeable blocking coalition in (A,µ0, µ ∪ I(µ)). We formalize

this as follows:

Definition 5. Path P is a blocking path of µ if P is a complete and alternating path in (A,µ0, µ ∪

I(µ)) that contains at least one edge from I(µ).

A blocking path of µ is aptly named as it corresponds to a blocking coalition of µ.

Proposition 1. Match µ is in the agreeable core if and only if µ admits no blocking paths. Moreover,

if P is a blocking path of µ then P blocks µ through µP .

Proposition 1 provides a test that is linear in the number of edges to see if µ is in the agreeable

core.9

In the following subsections we find it useful to partition paths between those that form cycles

and those that do not:

Definition 6. Let P = (e1, . . . , en). If e1 ∩ en = ∅, then P is cyclic; otherwise, P is linear.

As the name suggests, cyclic paths start with an agent and then return to that agent. In

(A,µ0, µ∪I(µ)), a cyclic, complete, and alternating path corresponds to agents (who are µ0-matched)

trading their µ0-partners among themselves. Linear paths that are also complete and alternating
9A depth first search initiated from every edge in I(µ) is sufficient.
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start with a loop and end with a loop, forming a line in the graph. In (A,µ0, µ ∪ I(µ)), a linear,

complete, and alternating path corresponds to agents trading their µ0-firms among themselves,

except that two agents are unmatched by one or both sets of edges. The Propose-Exchange

algorithm works by first producing a match µ1 that admits no linear blocking paths, then finding a

series of Pareto improvements of µ1 to produce a match µ2 that has no cyclic blocking paths.

5.2 The Propose Phase

The first phase of our algorithm outputs a match µ1 by systematically removing all linear blocking

paths from (C, µ0, µ∪ I(µ)). A linear blocking path P in (A,µ0, µ∪ I(µ)) corresponds to a series of

trades, but the agents at either end of the path are either µ0-unmatched or µP -unmatched. These

may be thought of as a cycle that includes the “unmatched” agent.

The Propose algorithm is a variation of the Deferred Acceptance algorithm (DA). The DA is

designed for markets where all agents are unmatched under µ0 and is defined in algorithm 1. We

noted in section 4.2 that the DA may fail individual rationality for both workers and firms. The

following modification from Guillen and Kesten (2012) guarantees individual rationality for the

workers: if w proposes to µ0(w), then µ0(w) must accept w and reject all other proposals.

However, in our setting firms also have µ0 as a guarantee. We incorporate this into the Propose

algorithm by only allowing a worker to make a proposal once his µ0-firm has received a more

preferred proposal. The Propose algorithm is defined in algorithm 3 and we indicate our addition

in italics.

Our first observation is that µ1 is individually rational. If w strictly prefers µ0 to µ1, then w

would have proposed to µ0 (and not been rejected). Again, if µ0(f) is matched by µ1 to a firm

other than f , then f received a proposal she prefers to µ0(f) and hence she prefers µ1 to µ0. We

then show that at the end of the Propose algorithm, no blocking path of µ1 is linear.

Lemma 1. µ1 admits no linear blocking paths.

Our proof leverages that a linear blocking path P in (A,µ0, µ∪ I(µ)) can be rewritten to always

begin with either a worker who is µ0-unmatched and hence proposes or a firm who is µP -unmatched

(and hence her µ0-worker makes a proposal). Because the start and finish of the path are connected

by workers who (weakly) prefer the firm they receive in the block, we can show that every worker in

the path must have had the opportunity to propose. We then show that the path must terminate

with either a worker who is µ0-matched or a firm who is µ0-unmatched, neither of which would

reject the proposal made through the path. We conclude by showing that every firm accepts the

proposal from her µP -partner, which contradicts that µ ̸= µP .
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Algorithm 3 Propose Phase algorithm
Notation: when we write µ(f)← w, we mean that f is matched to w and if another worker w′

was matched to f , then w′ is matched to ∅.

set µ1(w)← ∅ for all w ∈W . ▷ every w needs to be matched

set µ1(f)← f for all f ∈ F . ▷ every f is initially unmatched

if w ≻µ0(w) µ0(w) then set µ1(w)← µ0(w). ▷ w is initially matched to µ0(w)

while µ1(w) = ∅ for some w ∈W do ▷ continue until every w has been matched

for every w ∈W such that µ1(w) = ∅ do ▷ every unmatched w proposes

w proposes to his most-preferred firm that he has not yet proposed to; if he would rather

be unmatched, instead he proposes to himself and set µ1(w)← w.

end for

for every f ∈ F do ▷ every f rejects all but one proposal

if f receives a proposal from her µ0-partner then f rejects all other current and future

proposals and set µ1(f)← µ0(f). ▷ f accepts µ0(f)

else let w be f ’s most preferred proposal that she prefers to being unmatched and to her

µ0-worker (if any); f rejects all other proposals and set µ1(f)← w.

end for

end while

return µ1
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5.3 The Exchange Phase

In the second phase of the algorithm, we eliminate all cyclic blocking paths. Cyclic blocking paths

have special significance in (A,µ0, µ ∪ I(µ)). A cyclic blocking path corresponds to workers and

their µ0-firms rearranging their status quo matches among themselves. No agent in a cyclic path is

unmatched by either µ or µ0. A cyclic blocking path represents an inefficient allocation for C: the

coalition could have rearranged their status quo matches among themselves and obtained a better

match.

The Exchange algorithm is an adaptation of the Top Trading Cycles (TTC) algorithm to find

these cycles and remove them. The difficulty with using solely the TTC in our setting is that the

TTC does not give firms the ability to select between workers. Although firm’s preferences limit the

set of acceptable workers, which worker is matched to the firm ultimately depends on the worker

the firm is required to point at. If only some workers or firms are matched by µ0, then the firm’s

lack of choice leads to violations of the agreeable core.

We resolve this by only applying the TTC to workers and firms who did not both find better

partners through the Propose algorithm. Recall that the agreeable core gives agents veto rights

over their µ0-partner’s potential matches. In our Exchange algorithm we leverage this by uniformly

giving workers the power to determine their µ0-firm’s partner, subject to individual rationality

constraints. The Exchange algorithm is defined in algorithm 4 and we indicate our addition in

italics.

Algorithm 4 Exchange Phase algorithm
set µ2(a)← µ1(a) for all a. ▷ start with µ1

every w such that µ1(w) = f stands up with µ0(w) and all other agents sit down.

▷ status quo partners stand up if µ1 did not improve them

while at least one worker is standing do ▷ continue until every a is matched

every standing worker points to his most-preferred of the standing firms who prefer him to

her µ0-worker.

every standing firm points to her µ0-worker.

choose an arbitrary cycle (w1, f2, . . . w2k−1 ≡ w1, f2k ≡ f2) such that every agent points to

the next agent in the cycle and have all agents in the cycle sit down.

set µ2(wk)← fk+1. ▷ match w in the cycle to the f he points to

end while

return µ2

Our first observation is that the Exchange algorithm makes no agents worse off than under µ1.
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Workers only point to firms they prefer to µ0, and by our simplification of workers’ preferences,

firms can only be pointed at by workers they prefer to µ0. The result is that at the end of the

Exchange algorithm, µ2 admits no cyclic blocking paths.

Lemma 2. µ2 admits no cyclic blocking paths.

Our proof leverages that if w strictly prefers f to µ2(w), then f must sit down at least one step

before w. A cyclic blocking path then implies that the firms in the path sit down on average strictly

before the workers in the path sit down. However, because every worker’s µ0-firm is in the path

and they sit down in the same step, it must be that the firms in the path sit down on average in the

same step as the workers in the path sit down. This contradiction rules out cyclic blocking paths.

5.4 Existence

We are now ready to prove our main result.

Proof of theorem 1:

Suppose (toward a contradiction) that µ2 is not in the agreeable core. Then by proposition 1

the graph (A,µ0, µ2 ∪ I(µ2)) contains a blocking path P . By lemma 2, P is linear. But P is

also blocking path in (A,µ0, µ1 ∪ I(µ1)) because µ2 ∪ I(µ2) ⊆ µ1 ∪ I(µ1) and I(µ2) ⊆ I(µ1). By

lemma 1, P is not linear. This is a contradiction, which proves the claim.

The importance of the Propose-Exchange algorithm in our proof cannot be understated. However,

the algorithm has practical implications because it is also computationally efficient. The Propose

phase runs in polynomial time because each worker can make at most |F |+ 1 proposals. Similarly,

one cycle is removed in every iteration of the Exchange phase, and at most |F | cycles can be

removed. An efficient algorithm is necessary for implementing the agreeable core in applications.

6 Additional Results

In this section we address two additional questions, primarily with negative results. First, we

consider the incentive properties of the PE algorithm. Second, we study the structure of the

agreeable core.

6.1 Manipulability

In many applications (such as school choice), market designers prefer mechanisms that incentivize

one side (typically workers) to truthfully report their preferences. A matching mechanism maps
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reported preferences ≿ to a match ψ(≿) and it is manipulable if there exists a worker10 w, a

preference profile ≿, and a preference ≿′
w such that the worker prefers ψ(≿−w,≿′

w) to ψ(≿). If the

mechanism is not manipulable, then workers do not need to strategize and their reports can be

taken at face value for statistical purposes. Neither the DA nor the TTC are manipulable. Because

the PE is a combination of the DA and the TTC, one may hope that the PE is also not manipulable

by workers. This is not the case, and moreover is a universal difficulty with the agreeable core:

Theorem 2. If ψ(≿) is in the agreeable core for all ≿, then ψ is manipulable.

6.2 Structure

In this subsection, we discuss the difficulty with importing structural results from the classic

literature on stable matches into our framework. Although the set of stable matches has a well-

understood structure (which we summarize in the following paragraph), the agreeable core is

not as tame. The hurdle in the analysis comes from the Exchange phase. To the best of our

knowledge, there are no results from the literature that apply to the agreeable core when every

agent is µ0-matched and prefers their µ0-match to being unmatched.

We briefly summarize the main structural results on the set of stable matches. First, a lattice is

a partially ordered set (L,≥) such that any two elements of L have a unique least upper bound,

called the join of x and y, and a unique greatest lower bound, called the meet of x and y. That is,

there is a unique x ∨ y such that if z ≥ x and z ≥ y then z ≥ x ∨ y, and there is a unique x ∧ y

such that if x ≥ z and y ≥ x then x ∧ y ≥ z. A key result11 is that the set of stable matches

forms a lattice with the partial order ≿W . The join of two stable matches is the match that gives

every worker w his more preferred partner from {µ(w), ν(w)} and every f her less preferred partner

from {µ(f), ν(f)}; the meet is given symmetrically. This implies that there is a conflict of interest

between the workers and the firms: if every worker weakly prefers a stable µ to a stable ν, then

every firm weakly prefers ν to µ. Moreover, there is a worker optimal stable match and a firm

optimal stable match.

We show that the agreeable core fails to be a lattice through an example. Let µ0(1) = A,

µ0(2) = B, and µ0(3) = C, and preferences are given as in figure 2. Both the spair 2 and B and

the pair 3 and C prefer to participate in a cycle with the pair 1 and A, but 1 and A have opposing

preferences over the two possible cycles. Worker 1 prefers firm C and firm A prefers worker 2, and

so either cycle may be in the agreeable core. The agreeable core consists uniquely of the ∗ match
10We only consider one side of the market (workers) because these kinds of mechanisms are typically always

manipulable by at least one side of the market.
11Donald Knuth attributes this to John H. Conway.
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1 2 3

C∗ Ã A∗

B̃ B∗ C̃

A ... ...

... ... ...

A B C

2̃ 1̃ 1∗

3∗ 2∗ 3̃

1 ... ...

... ... ...

Figure 2: µ0 is given in bold. In the ∗ match workers 1 and 2 swap firms A and B, while in the ∼

match workers 1 and 3 swap firms A and C.

and the ∼ match, a pair which is not ordered by ≿W . In this example there is no worker optimal

match.

Despite the impossibility of recovering a complete lattice over the agreeable core as in the classic

model of stability, we show that a (decidedly narrower) result continues to hold. Given that the

lattice structure failed in the example because two competing cycles exist in the agreeable core, an

astute reader may conjecture that the lattice structure continues to hold for workers and firms who

do not lie in such cycles. Suggestively, say that a is a free agent in µ if a lies on a linear, complete,

and alternating path of (A,µ0, µ). Our first lemma justifies our terminology:

Lemma 3. If µ is in the agreeable core, then there are no blocking pairs among free agents in µ.

Moreover, every free agent a in µ weakly prefers µ(a) to being unmatched.

The proof of lemma 3 shows that these agents are “free” to form blocking pairs because each

can satisfy a sequence formed by alternating edges from µ0 and µ. Free agents resemble the agents

in the classic model.

However, an obstacle arises because the free agents depend on µ; that is, a may be a free agent

in µ but not in ν. What we can show is that, if µ and ν share the same set of free agents and they

agree on the agents who are not free, then µ ∨ ν is in the agreeable core. Toward that end, we say

that µ and ν are structurally similar if they have the same set of free agents and µ(a) = ν(a) for

every agent which is not free. Our second lemma shows that structurally similar matches in the

agreeable core play nicely with the join and meet operators defined previously:

Lemma 4. Let µ and ν be structurally similar matches in the agreeable core. Then µ ∨ ν is a

match. The same holds for µ ∧ ν.
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Notably, µ∨ν may not be structurally similar to µ and ν.12 The (possible) structural differences

between µ ∨ ν and µ force us to discard any hope of obtaining a lattice-like result. However, the

join and meet operators still produce matches in the agreeable core:

Theorem 3. Let µ and ν be structurally similar matches in the agreeable core. Then µ ∨ ν and

µ ∧ ν are both in the agreeable core.

The conflict of interest continues to hold for structurally similar matches. That is, if µ and ν

are in the agreeable core and are structurally similar, then if every worker weakly prefers µ to ν,

then every firm weakly prefers ν to µ.

Returning to figure 2 we see that no agents at either match are free agents. Conversely, in the

classic matching framework, µ0(a) = a for every agent and thus every agent is free. Every match is

then structurally similar and hence our theorem 3 generalizes standard results.

7 Discussion

We close our exposition by discussing the nuances of applying the agreeable core in several

applications. To simplify the exposition we limited our theory to one-to-one matching. Most

applications, however, are many-to-one. One standard way to extend our theory to many-to-one

matching in the context of school choice is to duplicate schools according to their capacities and

then to break ties in students’ preferences in an arbitrary manner. To incorporate the status

quo, students assigned to a school by µ0 must be assigned to a particular duplicate of the school.

However, care must be taken when giving students arbitrary preferences over the duplicates in

the operation of the Propose phase. The trade-offs between different tie-breaking rules is an open

question and the direction we intend to take this theory next.

In applications to school matching, the PE algorithm enables market designers to blend “non-

tradable” and “tradable” priorities while incorporating minimum quotas. A student i has a

non-tradable priority at school s if s ranks i above every student, µ0(i) = i, and µ0(s) = s; i can

always attend s, but can never trade his priority at s. A i has a tradable priority if µ0(i) = s and

s prefers to be unmatched rather than matching with i; i can always choose to attend s because

µ0(i) = s, is never forced to attend s because s ≿s i, and can trade s during the Exchange phase if i

does not find a better partner in the Propose phase. Likewise, a minimum quota can be enforced by

setting µ0(i) = s and placing i just above being unmatched in s’s preference; i will only b required

to attend s if there is no way to rearrange students (without harming any student) and still meet
12We have an example demonstrating this (available upon request), but it is too lengthy to include because it

involves eight workers and eight firms.
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the schools minimum quotas.13

This paper provides the Propose-Exchange algorithm for finding elements in the agreeable

core. Our methods have not allowed us to recover other elements in the agreeable core.14 The

main difficulty is analyzing the agents assigned in the Exchange phase, as seen in section 6.2. We

hope that our exposition inspires researchers to find alternative means for finding elements of the

agreeable core and to characterize its structure. In school matching, finding a “student optimal”

match is a priority, and future work in this direction may be fruitful.

In the NRMP application with early offers, an obvious question is whether taking an early offer

(adding a match in µ0) will negatively impact one or both parties of the contract. The choice of

status quo can have unusual effects on the agreeable core. One odd observation is that, even if a

worker and firm both prefer to be unmatched rather than be matched to each other, a status quo

match between them affects the agreeable core by further restricting the set of agreeable coalitions.

Perhaps counter-intuitively, adding a status quo match between a worker and firm may increase

the agreeable core by adding elements that both agents strictly prefer to another match in the

agreeable core. Understanding how the agreeable core change with respect to the status quo is

an important next step for applying this theory to the NRMP and other markets for entry-level

professionals.

A Omitted Proofs

Lemma A.1. µ is individually rational if and only if µ does not admit a blocking path of length 2.

Proof. For the (⇒) direction: We prove the contrapositive; that is, if µ admits a blocking path of

length 2, then µ is not individually rational. Let (e1, e2) be a blocking path of µ. Let e1 ∈ µ0 and

e2 ∈ I(µ); the argument is symmetric if the order is reversed. Observe that a ∈ e1 strictly prefers

µP (a) to µ(a). Because µP (a) = µ0(a), it follows that a strictly prefers µ0 to µ. Therefore, µ is

not individually rational.

For the (⇐) direction: We prove the contrapositive; that is, if µ is not individually rational,

then µ admits a blocking path of length 2. Let µ not be individually rational. Then there is an

agent a such that µ0(a) ≻a µ(a). Then {a, µ0(a)} ∈ I(µ). Therefore ({a, µ0(a)}, {a, µ0(a)}) with

the first edge from µ0 and the second edge from I(µ) is a blocking path of length 2 of µ.

13Because schools cannot have indifferences in preferences, this statement applies only to the PE algorithm and

not more generally to the agreeable core.
14Beyond those obtained by reversing the role of workers and firms in either or both steps of the Propose and

Exchange phases.



A Omitted Proofs 23

Lemma A.2. If P is a complete and alternating path in (A,µ0, µ ∪ I(µ)), then every agent

contained in P is in exactly one edge from µ0 and one edge from µ ∪ I(µ).

Proof. Let P = (e1, . . . , en) be a complete and alternating path in (A,µ0, µ ∪ I(µ)) and let a be

contained in P . If n = 2, then the statement is trivial because completeness implies every a ∈ P is

in both e1 and e2 and P alternating implies that one of {e1, e2} is in µ0 and the other is in µ∪ I(µ).

Hence, let n ≥ 3.

Again, if a ∈ ek ∩ ek+1 for k ≥ 1 then the statement is trivial because completeness implies ek

and ek+1 are the only edges in P containing a and P alternating implies that one of {ek, ek+1} is

in µ0 and the other is in µ ∪ I(µ). Hence, let a ∈ e1 ∩ en and thus P is cyclic. Let a be a worker;

the argument is symmetric if a is a firm.

Because there is a bijection15 between the workers and firms contained in P and every agent

in P is contained in two edges of P , n is even. Therefore, if e1 ∈ µ0 then en ∈ µ ∪ I(µ), and if

e1 ∈ µ ∪ I(µ) then en ∈ µ0. This proves the result.

Proof of proposition 1:

For the (⇒) direction: We prove the contrapositive; that is, if µ admits a blocking path, then µ

is not in the agreeable core. Let P = (e1, . . . , en) be a blocking path in (A,µ0, µ∪ I(µ)). Note that

µ0(P ) = P and µP (P ) = P .

By the definition of I(µ), it follows that µP ≿P µ. Because P is blocking, there is an edge e in

P that is also in I(µ). Hence, both agents in e strictly prefer µP to µ. Therefore, P is an agreeable

blocking coalition and µ is not in the agreeable core.

For the (⇐) direction: We prove the contrapositive; that is, if µ is not in the agreeable core

then µ admits a blocking path. Let µ be not in the agreeable core. Then either µ is not individually

rational, or there exists an agreeable blocking coalition C that blocks µ through µ′. If µ is not

individually rational, then by lemma A.1 µ admits a blocking path. We consider the case when

there exists an agreeable blocking coalition C that blocks µ through µ′.

Let a1 be an agent in C such that µ′(a1) ≻a1 µ(a1); such an agent exists by the definition of a

blocking coalition. We will construct a path P from a1 by iteratively adding alternating edges from

µ0 and µ′ to {a1, µ
′(a1)}, first with increasing indices and then with decreasing indices.

Starting e1 ≡ {a1, µ
′(a1)} and P1 ≡ (e1), do the following iteratively. Choose an edge ek+1 from

µ0 or µ′ that is not already present in Pk such that ek ∩ ek+1 ̸= ∅, then define Pk+1 by appending

ek+1 to Pk. Continue until no more edges may be added in this way. Finally, repeat the same

process starting from e1, but prepending edges e0, e−1, . . . to Pk.
15namely, µ0
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Observe that P is a path in (A,µ0, µ ∪ I(µ)) because µ′ ≿C µ. Next, observe that because

every agent in P is contained in at most two edges ({a, µ0(a)} and {a, µ′(a)}); every agent in P

is contained in at least two edges because edges are added until no more can be added without

including repeats and therefore P is complete. Also, P is alternating because e2k ∈ µ0 and

e2k−1 ∈ µ′. Finally, observe that e1 ∈ I(µ). Therefore, P is a blocking path of µ. Therefore

(A,µ0, µ ∪ I(µ)) contains a blocking path, completing the proof.

Introduction to the proof of lemma 1:

Before proving lemma 1, we first introduce some notation and a short result: We say that loop

e = {a} is a proposal source if either

1(a) : a ∈ µ0 and a ∈W , or

1(b) : a /∈ µ0 and a ∈ F .

We say that loop e = {a} is a proposal sink if e in not a proposal souce; that is, if either

2(a) : a /∈ µ0 and a ∈W or

2(b) : a ∈ µ0 and a ∈ F .

A straightforward parity argument shows that if P = (e1, . . . , en) is a complete, alternating, and

linear path in (A,µ0, µ∪ I(µ)), then one of {e1, en} is a proposal source and the other is a proposal

sink and vice versa.

Lemma A.3. Let P = (e1, . . . , en) be a complete, alternating, and linear path in (A,µ0, µ ∪ I(µ))

with n ≥ 3. Then one of {e1, en} is a proposal source and the other is a proposal sink.

Proof. Because P is linear and complete, e1 and en are both loops. Hence e1 and en are (individually)

either proposal sinks or proposal sources (but not both). Let e1 = {a1} and en = {an−1}. The

remainder of the proof shows that if one is a proposal source then the other is a proposal sink.

Suppose e1 is a proposal source. Note that because µ0 and µ ∪ I(µ) are both bipartite and P

is complete and alternating, except for the loops that open and close P all edges must alternate

between worker to firm and firm to worker. That is, if write ek = {ak−1, ak} for 1 < k < n, then

the agent with the odd index is from the same set (workers or firms) as a1 and the agent with the

even index is from the other.

There are two cases:

1. n is even: There are two subcases:

(a) e1 ∈ µ0 and a1 ∈W : Then en /∈ µ0. Then an−1 ∈W . Thus en is a proposal sink.
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(b) e1 ∈ µ and a1 ∈ F : Then en ∈ µ0. Then an−1 ∈ F . Thus en is a proposal sink.

2. n is odd: There are two subcases:

(a) e1 ∈ µ0(a1) and a1 ∈W : Then en ∈ µ0. Then an−1 ∈ F . Thus en is a proposal sink.

(b) e1 ∈ µ(a1) and a1 ∈ F : Then en /∈ µ0. Then an−1 ∈W . Thus en is a proposal sink.

A symmetric argument shows that if an is a proposal source, then a1 is a proposal sink. This proves

the claim.

Proof of lemma 1:

Suppose (toward a contradiction) that P = (e1, . . . , en) is linear blocking path of µ1. Because

P is linear and complete, e1 and en are both loops. By construction µ1 is individually rational and

hence n ≥ 3 (lemma A.1). By lemma A.3 we relabel P such that e1 is a proposal source and en is

a proposal sink. Let

e1 = {a1}

e2 = {a1, a2}
...

en−1 = {an−2, an−1}

en = {an−1}

By our relabeling of P , it follows that if {ak, ak+1} ∈ µP , then ak ∈W .

We argue by induction that every worker ak ∈ P makes a proposal during the Propose algorithm.

Because every agent contained in P weakly prefers µP to µ1, it follows that every worker contained

in P who proposes proposed to his µP -partner. In our base case we show that the worker with the

lowest index contained in P proposes during the Propose algorithm. There are two possibilities:

1. a1 is a worker: Because e1 is a proposal source by definition µ0(a1) = a1. Hence a1 begins

the Propose algorithm matched to ∅. Therefore, a1 proposes during the Propose algorithm.

2. a1 is a firm: Because e1 is a proposal source, by definition µ0(a1) ̸= a1. Therefore µ0(a1) = a2.

Because a1 prefers µP to µ0 and µP (a1) = a1 because e1 is loop, it follows that a2 is matched

to ∅ at the start of the Propose algorithm. Therefore, a2 proposes during the Propose

algorithm.

For the inductive step, suppose ak−1 ∈W makes a proposal; we will show that the worker with

the next highest index makes a proposal. If k− 1 ≥ n− 2, then ak−1 is the worker with the highest
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index and the claim is vacuous; therefore, suppose k− 1 < n− 2. Because µP (ak−1) = ak, it follows

that ak−1 proposes at some point to ak. Because µ1 is individually rational and µ0(ak) = ak+1, it

follows that ak weakly prefers ak−1 to ak+1. Therefore ak+1 is matched to ∅ at some point and

thus ak+1 makes at least one proposal during the Propose algorithm, concluding our inductive

argument.

Next, we show that an agent contained in a proposal sink never rejects a proposal from their

µP -partner. If an−1 is a worker, then he never rejects a proposal from himself. If an−1 is a firm,

then µ0(an−1) = an−1 by definition. Because an−1 prefers µP to both µ0 and µ1 and because an−1

receives no proposals she prefers to µ1(an−1) (by construction of µ1), it follows that an−1 does not

reject a proposal from µP (an−1).

Finally, we show that no worker contained in P is rejected by his µP -partner. To see this,

suppose (toward a contradiction) that k − 1 is the largest index such that ak−1 is rejected by

µP (ak−1). Because a proposal sink does not reject a proposal by his or her µP -partner, it follows

that k − 1 < n− 2 (that is, ak−1 is not one of the last two agents in the path).

Because ak prefers ak−1 to µ1(ak) and yet ak rejects ak−1, it must be that µ0(ak) = µ1(ak) (by

construction of µ1). Therefore ak is matched to ak+1 by both µ0 and µ1. Because matches are

bijective, we have µ1(ak+1) = µ0(ak+1) = ak. Consider that, because P is a complete and n ≥ 3, it

follows that µP (ak+1) ̸= µ1(ak+1). Therefore ak+1 must be rejected by µP (ak+1), a contradiction

to our supposition that k − 1 is the largest index for which a worker is rejected by his µP -match.

Therefore, because no worker in P is rejected by his µP -partner, it follows that µP agrees with

µ1 on P . Hence, every edge in P from µ1 ∪ I(µ1) is from µ1. But because P is a blocking path,

it must contain an edge from I(µ1). Because µ ∩ I(µ1) = ∅, this is a contradiction. Therefore no

blocking path of µ1 is linear.

Proof of lemma 2

Suppose (toward a contradiction) P = (e1, . . . en) is a cyclic blocking path in (A,µ0, µ2 ∪ I(µ2)).

Because there is a bijection16 between the workers and firms contained in P , n is even. Define

m ≡ n
2 .

From P (after a possible relabeling) define a vector of agents (a1, a2, . . . , an ≡ a0) such that

{ak−1, ak} = ek−1, a1 ∈W , and e1 ∈ I(µ2). Because P is alternating, every odd agent is a worker

and every even agent is a firm.

We first show that every agent in P stands up in the Exchange phase. To see this, suppose

(toward a contradiction) that some worker ak in P does not stand up during the Exchange phase.

Then ak makes a proposal during the Propose phase to ak+1. Therefore, ak+2 makes a proposal
16namely, µ0
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during the Propose phase. We can iterate this argument to show that every worker in P makes

a proposal during the Propose phase. Because P is a blocking path, each firm in P prefers her

respective proposal to her µ1-partner. Because ak−2 is rejected by ak−1, it necessarily follows that

µ1(ak) = ak−1. Therefore, ak stands up in the Exchange phase, a contradiction. Therefore, every

agent in P stands up during the Propose phase.

Let tk be the iteration of the while . . . do loop of the Exchange algorithm that ak sits down

in.17 During the Exchange algorithm every worker a2k−1 points to firm a2k; hence, firm a2k sits

down weakly earlier than worker a2k−1. In symbols, t2k−1 ≥ t2k for all 1 ≤ k ≤ m. Because

e1 ∈ I(µ2), it follows that t1 > t2. Therefore,
m∑

k=1
t2k−1 >

m∑
k=1

t2k

However, every worker a2k+1 sits down at the same time firm a2k sits down. In symbols,

t2k+1 = t2k for all 1 ≤ k ≤ m. Therefore,
m∑

k=1
t2k+1 =

m∑
k=1

t2k

Because
∑m

k=1 t2k+1 =
∑m

k=1 t2k−1, we reach a contradiction.

Proof of theorem 2:

Consider the following counterexample. There are three workers denoted by the numbers 1, 2,

and 9, and three firms denoted by the letters A, B, and Z. Workers 1 and 2 are reference matched

to A and B, respectively, while worker 9 and firm Z are each reference matched to him or herself.

Formally:

µ0(1) = A µ0(2) = B µ0(9) = 9

µ0(A) = 1 µ0(B) = 2 µ0(Z) = Z

A profile of preferences ≻ and an alternate profile of worker preferences are given in figure 3.

We use the circles to indicate match µ◦, the squares to indicate match µĲ, the ˆ to indicate µ̂, and
17That is, if ak sits down on the fourth iteration of the while loop, then tk = 4.
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≻′
1 ≻2 ≻9

B◦ ZĲ BĲ

Z A◦ Z◦

AĲ B ...

... ...

≻′
1 ≻′

2 ≻9

B◦ ZĲ BĲ

Z◦ A Z̃

ÃĲ B̃ ...

... ...

≻1 ≻2 ≻9

B◦ Z B

Z A◦ Z◦

AĲ B ...

... ...

≻′
1 ≻′

2 ≻′
9

B ZĲ BĲ

Z◦ A Z

AĲ B ...

... ...

≻A ≻B ≻Z

A 9Ĳ 9̃◦

2◦ 1◦ 1

1̃Ĳ 2̃ 2Ĳ

... ... ...

P1 P2 P3 P4

Figure 3: Tables provide preferences ≻ and alternate worker preferences ≻′. A grayed-out firm in

≻′ indicates that the worker matching to himself more than to that firm.

˜ to indicate µ̃.

µ◦(1) = B µ◦(2) = A µ◦(9) = Z

µ◦(A) = 2 µ◦(B) = 1 µ◦(Z) = 9

µĲ(1) = A µĲ(2) = Z µĲ(9) = B

µĲ(A) = 1 µĲ(B) = 9 µĲ(Z) = 2

µ̃(1) = A µ̃(2) = B µ̃(9) = Z

µ̃(A) = 1 µ̃(B) = 2 µ̃(Z) = 9

We keep the firm preference profile fixed at ≻A, ≻B and ≻Z for the firms and only specify preferences

for the workers.

To prove the result, suppose that ψ is not manipulable. We consider the sequence of preference



A Omitted Proofs 29

profiles P1, P2, P3, and P4 formed by swapping ≻′
1 for ≻1, then ≻′

2 for ≻2, and then ≻′
9 for ≻9.

We use the non-manipulability of ψ to restrict ψ to a unique match in each case. We then show

that at P3 worker 9 can profitably deviate to ≻′
9, a contradiction to the non-manipulability of ψ.

First, we limit the scope of matches we consider. Consider any µ and any Pj .

• If A ≻1 µ(1) then 1 strictly prefers µ0(1) to µ(1), hence µ is not in the agreeable core; the

same holds for B ≻2 µ(2), 2 ≻B µ(B), and 1 ≻A µ(A).

• If j ̸= 4 and Z ≻9 µ(9), then {9, Z} is an agreeable coalition that blocks µ.

• If j = 4 and Z ≻9 µ(9), then µ in the agreeable core implies that µ(1) ̸= Z and hence

B ≻9 µ(9) implies that {2, 9, B, Z} is an agreeable coalition that blocks µ; hence, if µ is in

the agreeable core then µ(9) = B.

• If µ(1) = Z and µ(2) = A, then for P1 {1, A, Z} is an agreeable blocking coalition and for

P2, P3, and P4 A ≻′
1 Z. Hence for all Pj µ(1) = Z and µ(2) = A imply that µ is not in the

agreeable core.

It follows that every worker is matched to a firm, and thus every firm is matched to a worker.

Therefore, any match in the agreeable core only occurs between agents who are listed on each

other’s preferences in figure 3. An exhaustive search reveals that µ◦, µĲ, and µ̃ are the only matches

that meet these criteria.

For P1, the agreeable core is {µ◦} because:

✓ µ◦ is the output of the PE algorithm and hence is in the agreeable core.

✗ µĲ is blocked by the agreeable coalition {1, A, Z} with any deviation µ′ such that µ′(1) = Z

and µ′(A) = A.

✗ µ̃ is blocked by the agreeable coalition {1, 2, A,B} with any deviation µ′ such that µ′(1) = B

and µ′(2) = A.

Hence, ψ(P1) = µ◦.

For preferences P2, the agreeable core is {µ◦, µĲ} because:

✓ µ◦ does not match any worker to a firm he dropped from his preference, so every blocking

coalition under these preferences forms under the prior preferences.

✓ µĲ is the output of the PE algorithm and hence is in the agreeable core.

✗ µ̃ is blocked by the agreeable coalition {1, 2, A,B} with any deviation µ′ such that µ′(1) = B

and µ′(2) = A.
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If ψ(P2) = µĲ, then consider the deviation by worker 1 of reporting≻1 at P2. Because µ◦(1) ≻′
1 µ

Ĳ(1),

this is a profitable deviation. Therefore, because ψ is not manipulable, ψ(P2) = µ◦.

For preferences P3, the agreeable core is {µĲ, µ̃} because:

✗ µ◦ matches worker 2 to firm A, which violates the requirement that µ(2) ≿2 B.

✓ µĲ is the output of the PE algorithm and hence is in the agreeable core.

✓ µ̃: Observe that Z cannot be strictly better off in any blocking coalition, and thus 2 cannot

be strictly better any blocking coalition. Furthermore, any agreeable coalition that makes 1

strictly better off must include B and hence, because the coalition is agreeable, 2. Therefore,

any agreeable blocking coalition cannot make any worker strictly better off. Hence, µ̃ is also

in the agreeable core.

If ψ(P3) = µĲ, then consider the deviation by worker 2 of reporting≻′
2 at P2. Because µĲ(2) ≻2 µ

◦(2),

this is a profitable deviation. Therefore, because ψ is not manipulable, ψ(P3) = µ̃.

In this final step, we note that the core under P4 is the singleton µĲ. To see this, observe that

µ◦ and µ̃ each match a worker to a firm he lists below his reference match, and therefore none of

these three matches is in the agreeable core. µĲ is the output of the PE algorithm and hence is in

the agreeable core. However, consider the deviation by worker 9 of reporting ≻′
9 at P3. Because

µĲ(9) ≻9 µ̃(9), this is a profitable deviation. Therefore, ψ is manipulable, a contradiction.

Proof of lemma 3: For the first claim, suppose (toward a contradiction) that w and f are both

free agents in µ who also both prefer each other to µ(w) and µ(f), respectively. We construct a

blocking path in (A,µ0, µ∪ I(µ)), a contradiction to the supposition that µ is in the agreeable core.

Because w is a free agent in µ, w lies on a linear, complete, and alternating path Pw of (A,µ0, µ).

Rewrite Pw such that

Pw = (e1, . . . , ek−1, {µ0(w), w}, {w, µ(w)}, . . .)

Similarly, there is a complete and alternating Pf such that

Pf = (. . . , {µ(f), f}, {f, µ0(f)}, ek+1, . . . , en)

There are two cases:

1. Pw and Pf do not intersect: Then

(e1, . . . , ek−1, {w, f}, ek+1, en)

is a blocking path of µ.
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2. Pw and Pf do intersect: Then let i be the greatest index less than k such that ei is in Pf .

Let ej be the edge in Pf such that ei = ej . Therefore the path

(ej , . . . , ek−1, {w, f}, ek+1, . . . ej−1)

is a blocking path of µ.

In either case there is a blocking path of µ. But then µ is not in the agreeable core, a contradiction.

For the second claim we can repeat the argument from the first claim, substituting the edge

{a} for {a, µ(a)} in path Pa.

Lemma A.4. Let µ and ν be structurally similar matches in the agreeable core. Then (µ∨ν)(w) ∈ F

if and only if µ(w) ∈ F or ν(w) ∈ F . Similarly, (µ ∨ ν)(f) ∈ W if and only if µ(f) ∈ W and

ν(f) ∈W . A symmetric result holds for ∧.

Proof. Both statements clearly hold for every agent that is not free in µ (and ν because µ and ν

are structurally similar). Hence, we show that the statements hold for the free agents in µ.

For the first statement:

• For the (⇒) direction: We show that if µ(w) /∈ F and ν(w) /∈ F , then (µ ∨ ν)(w) /∈ F . Then

µ(w) = ν(w) = w, which implies (µ ∨ ν)(w) = w. Thus (µ ∨ ν)(w) /∈ F .

• For the (⇐) direction: We show that if µ(w) ∈ F or ν(w) ∈ F , then (µ ∨ ν)(w) ∈ F . To see

this, note that if µ(w) = f or ν(w) = f , then w strictly prefers f to being unmatched (w) by

lemma 3. Therefore, µ ∨ ν cannot leave w unmatched and therefore (µ ∨ ν)(w) ∈ F .

For the second statement:

• For the (⇒) direction: We show that if either µ(f) /∈W or ν(f) /∈W , then (µ ∨ ν)(f) /∈W .

Then µ(f) = f or ν(f) = f . By lemma 3, f weakly prefers both µ(f) and ν(f) being

unmatched. By the definition of ∨, (µ ∨ ν)(f) = f . Therefore, (µ ∨ ν)(f) /∈W .

• For the (⇐) direction: We show that if µ(f) ∈W and ν(f) ∈W , then (µ∨ ν)(f) ∈W . Then

{µ(f), ν(f)} ⊆W . Therefore (µ ∨ ν)(f) ∈W .

This completes the proof.

Proof of lemma 4: We draw our proof from the proof of Theorem 2.16 in Roth and Sotomayor

(1990). We show that µ ∨ ν is a match; the argument for µ ∧ ν is symmetric.

Because the free agents are the same in µ and ν, we need only to show that µ∨ ν is a match on

the free agents of µ and ν; all other matches are left unchanged because µ and ν are structurally
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similar. It is immediate from the definition of ∨ that items 1 and 2 from the definition of a match

hold. That is, we only need that (µ ∨ ν)(a) = b ⇐⇒ (µ ∨ ν)(b) = a. Of course, if a = b then the

statement is tautological; hence, we prove for w ∈W and f ∈ F :

(µ ∨ ν)(w) = f ⇐⇒ (µ ∨ ν)(f) = w.

For the (⇒) direction: We show that (µ ∨ ν)(w) = f implies (µ ∨ ν)(f) = w. We consider

the case when µ(w) = f ; the other case is symmetric. Suppose (toward a contradiction) that

(µ ∨ ν)(f) ̸= w. Then (µ ∨ ν)(f) = ν(f). Then f strictly prefers w to ν(f) and w strictly prefers

f to ν(w), so w and f is a blocking pair of ν, a contradiction by lemma 3. This completes this

direction.

For the (⇐) direction: We show that (µ ∨ ν)(f) = w implies (µ ∨ ν)(w) = f . We define a

sequence of sets, then study their cardinality. Let

W ′ ≡ {w ∈W : (µ ∨ ν)(w) ∈ F}

= {w ∈W : µ(w) ∈ F or ν(w) ∈ F} ∵ lemma A.4.

and

F ′ ≡ {f ∈ F : (µ ∨ ν)(f) ∈W}

= {f ∈ F : µ(f) ∈W and ν(f) ∈W} ∵ lemma A.4.

Observe the following relations:

|F ′| = |µ(F ′)| ∵ µ is a match

µ(F ′) ⊆W ′ ∵ Definition of F ′ and W ′

Therefore |F ′| ≤ |W ′|. Similarly,

|W ′| = |(µ ∨ ν)(W ′)| ∵ (⇒) implication

(µ ∨ ν)(W ′) ⊆ F ′ ∵ (⇒) implication

Therefore |W ′| ≤ |F ′| and thus |W ′| = |F ′|. Therefore |(µ∨ ν)(W ′)| = |F ′| and thus (µ∨ ν)(W ′) =

F ′.

The final string of implications is as follows: If (µ ∨ ν)(f) ∈ W , then f ∈ F ′. If f ∈ F ′, then

there exists w in w ∈W ′ such that (µ ∨ ν)(w) = f . This completes this direction.

Therefore, µ ∨ ν satisfies item 3 from the definition of a match and thus µ ∨ ν is a match.

Lemma A.5. Let µ and ν be structurally similar matches in the agreeable core. Then µ∨ν ⊆ µ∪ν

and I(µ ∨ ν) ⊆ I(µ) ∪ I(ν). The same holds for µ ∧ ν.
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Proof. By construction, µ ∨ ν only contains matches from µ and ν and thus µ ∨ ν ⊆ µ ∪ ν.

Let {w, f} ∈ I(µ∨ ν) and let AF be the free agents in µ (and ν because µ and ν are structurally

similar). There are three cases:

1. |{w, f} ∩ AF | = 0: Then (µ ∨ ν)(w) = µ(w) and (µ ∨ ν)(f) = µ(f) by construction, so

{w, f} ∈ I(µ).

2. |{w, f} ∩ AF | = 1: Suppose that w ∈ AF ; the other case is symmetric. Then either

(µ ∨ ν)(w) = µ(w) or (µ ∨ ν)(w) = ν(f); again, let (µ ∨ ν)(w) = µ(w) and the other case is

symmetric. Then (µ ∨ ν)(f) = µ(f) by construction, so {w, f} ∈ I(µ).

3. |{w, f} ∩AF | = 2: This contradicts lemma 3 and thus cannot happen.

In the cases that do not lead to a contradiction we see that {w, f} ∈ I(µ) ∪ I(ν), which completes

the proof.

Lemma A.6. Let µ and ν be structurally similar matches in the agreeable core. Then any blocking

path of µ ∨ ν must contain both a free agent in µ and an agent who is not free in µ. A symmetric

result holds for µ ∧ ν.

Proof. Let AF denote the free agents in µ (and ν because µ and ν are structurally similar), and let

P be a blocking path of µ ∨ ν. We show that P ̸⊆ AF and P ̸⊆ A\AF . To see this, consider both

cases (toward a contradiction in each case):

1. Suppose P ⊆ AF : Then exists an edge e in P such that e ∈ I(µ∨ ν). By lemma A.5, e ∈ I(µ)

(the other case is symmetric). If e = {w, f}, then e constitutes a blocking pair and contradicts

lemma 3. If e = {a}, then a strictly prefers being unmatched to µ and contradicts lemma 3.

Therefore, P ̸⊆ AF .

2. Suppose P ⊆ A\AF : Note thatµ∨ ν agrees with µ on A\AF . If P blocks µ∨ ν then P blocks

µ, a contradiction to the supposition that µ is in the agreeable core. Therefore, P ̸⊆ A\AF .

Therefore, P intersects both A and A\AF . By the definition of a path, there exists some e in P

that contains an agent in AF and an agent in A\AF .

Proof of theorem 3: We show that µ ∨ ν is in the agreeable core; the argument for µ ∧ ν is

symmetric. By lemma 4, µ ∨ ν is a match. Because µ and ν are both individually rational, µ ∨ ν is

individually rational. The remaining step is to show that there are no blocking paths of µ ∨ ν.

Suppose (toward a contradiction) that µ∨ν is blocked by an agreeable coalition. By proposition 1,

there is a blocking path P of µ∨ ν. Let AF denote the free agents in µ (and ν because µ and ν are

structurally similar).
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By lemma A.6, there is an edge in P that contains both an agent in AF and an agent in A\AF .

We choose an edge e = {a, b} such that a ∈ AF and b ∈ A\AF in the following manner. By the

definition of a blocking path, there must exist some edge e∗ in P that is in I(µ ∨ ν). By lemma 3,

e∗ must intersect A\AF . Take e to be the closest such edge in P (if two are equally close, choose

an arbitrary one). Note that µ0(a) ∈ AF by definition, so we can write P in the following manner:

P = (
contained in AF︷ ︸︸ ︷

e1, . . . , en−1, {µ0(a), a},
contains e∗︷ ︸︸ ︷

{a, b}︸ ︷︷ ︸
e

, en, . . . , eN ).

We show that there must exist an edge e′ (distinct from e) in en, . . . , eN that also contains

an agent in AF and an agent in A\AF . Suppose (toward a contradiction) that no such e′ exists.

Then the edges en, . . . , eN are all subsets of A\AF . Note that a ∈ AF implies that there is a linear,

complete, and alternating path in (A,µ0, µ)

P a = (ea
1 , . . . , e

a
k−1, {µ0(a), a}, {a, µ(a)}, ea

k . . . , e
a
K).

Then

(ea
1 , . . . , e

a
k−1, {µ0(a), a}︸ ︷︷ ︸

P a

, {a, b},
P︷ ︸︸ ︷

en, . . . , eN ).

is a path in (A,µ0, µ ∪ I(µ)) because µ and µ ∨ ν agree on A\AF . Furthermore, it is complete and

alternating by construction. Thus P is a blocking path of µ, a contradiction to the supposition

that µ is in the agreeable core. Therefore such an e′ exists. Let e′ = {a′, b′} in P be the first such

edge in en, . . . , eN , with a′ ∈ A\AF and b′ ∈ AF . Because e is chosen to be the closest such edge

to e∗, it follows that e∗ is between e and e′ in P .

Before completing the proof, we assess our current construction. We have two edges in P ,

e = {a, b} and e′ = {a′, b′}, such that a, b′ ∈ AF and b, a′ /∈ A\AF . Furthermore, an edge e∗ in

I(µ ∨ ν) is between e and e′ in P . By the definition of free agents, we have that e, e′ /∈ µ0. Every

edge between e and e′ is contained entirely in A\AF . A straightforward counting argument18 shows

that one of {a, b′} is a worker and the other is a firm, so we rewrite19

e = {w, f}

e′ = {w′, f ′}

with w, f ′ ∈ AF .

As we observed in the previous paragraph, e, e′ ∈ (µ ∨ ν) ∪ I(µ ∨ ν). Because w weakly prefers

(µ∨ν)(w) to both µ(w) and ν(w), and because (µ∨ν)(f) = µ(f) = ν(f), it follows that e ∈ µ∪I(µ)
18We can repurpose the proof of lemma A.3.
19The problem is symmetric here as well, so this is without loss of generality.
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and e ∈ ν ∪ I(ν). By lemma A.5, we have that e′ ∈ µ ∪ I(µ) or e′ ∈ ν ∪ I(ν). Suppose the former

case (the latter case is symmetric).

Because w, f ′ ∈ AF implies that there are a linear, complete, and alternating paths (the first is

a relabeling of P a)

Pw = (ew
1 , . . . , e

w
k−1, {µ0(w), w}, {w, µ(w)}, ew

k , . . . , e
w
K).

P f ′
= (ef ′

1 , . . . , e
f ′

l−1, {µ(f ′), f ′}, {f ′, µ0(f ′)}, ef ′

l , . . . , e
f ′

L ).

Then observe that the following path P ∗ is a complete and alternating path of µ by construction:

P ∗ = (ew
1 , . . . , e

w
k−1, {µ0(w), w}︸ ︷︷ ︸

P w

,

P︷ ︸︸ ︷
{w, f}, . . . , {w′, f ′}, {f ′, µ0(f ′)}, ef ′

l , . . . , e
f ′

L︸ ︷︷ ︸
P f′

).

Additionally, the P ∗ contains e∗ ∈ I(µ ∨ ν) because e∗ is between e and e′ in P . By lemma A.5,

e∗ ∈ I(µ). Therefore, P ∗ is a blocking path of µ, a contradiction to the supposition that µ is in

the agreeable. Therefore, there are no blocking paths of µ ∨ ν, which implies that µ ∨ ν is in the

agreeable core.
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